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The stability of multielectron bubbles in liquid helium is investigated theoretically. We find that multielec-
tron bubbles are unstable against fission whenever the pressure is positive. It is shown that for moving bubbles
the Bernoulli effect can result in a range of pressures over which the bubbles are stable.
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I. INTRODUCTION

Multielectron bubbles in liquid helium were first observed
by Volodin et al.1 In their experiment a layer of electrons was
held in place just above the free surface of a bath of liquid
helium by an electric field. The field was produced by a
positive voltage applied to an electrode immersed in the liq-
uid. The electrons remained outside the helium because for
an electron to enter liquid helium it has to overcome a po-
tential barrier of height approximately 1 eV.2 When the field
reached a critical value, the surface of the liquid became
unstable and a large number of electrons entered into the
liquid through the formation of bubbles. Each of these
bubbles typically contained 107�108 electrons. The multi-
electron bubbles are of interest because they could possibly
provide a way to study a number of properties of an electron
gas on a curved surface.3

As a first approximation, one can consider that the radius
of a spherical multielectron bubble �MEB� is such as to mini-
mize the sum of the energy associated with the Coulomb
repulsion of the electrons and the surface energy of the
bubble. This gives an equilibrium radius of

R0 = � Z2e2

16���
�1/3

, �1�

where Z is the number of electrons, � is the surface tension
of helium �0.36 erg cm−2 at 1.3 K�,4 � is the dielectric con-
stant �1.0573 at low temperature�, and the applied pressure
has, for the moment, been taken to be zero. Thus, for ex-
ample, for Z=107 the radius is 106 �m.

So far, there have been a very limited number of experi-
mental studies of these bubbles.1,5–7 In this paper we first
consider the stability of an MEB that is at rest in liquid �Sec.
II�. We find that, at least when the simplest model of the
energy of the electron system is used, the bubble is unstable
against fission whenever the applied pressure is positive. In
Sec. III we investigate how the stability of a bubble is
changed when it is moving through the liquid. We have been
able to determine the region in the pressure-velocity plane
where the bubble is stable. In the conclusion we mention
some interesting differences between the behavior of multi-
electron bubbles and single electron bubbles. The numerical
calculations in this paper are all for helium-4.

II. STABILITY OF BUBBLES AT REST

Since MEBs were first observed, there have been several
theoretical investigations of the stability of these objects. The

first discussion was given by Shikin8 and further analysis
was given by Salomaa and Williams,9–11 and Tempere and
co-workers.3,12–14 In the simplest model, the electrons are
taken to be distributed over the inner surface of the bubble
such that the electric field is everywhere exactly normal to
the surface. This ensures that the charge distribution is in
equilibrium. The electrons are treated classically and so they
are localized at the surface in a layer of zero thickness �see
below�. Thus the total energy of the bubble is taken to be

E = ES + EV + EC. �2�

Here ES=�S is the surface energy, where S is the surface
area and � is the surface tension, EV= PV is the volume
energy �where P is the applied pressure and V is the bubble
volume�, and EC is the Coulomb energy given by

EC =� �E2

8�
dV . �3�

Since the electrons can move freely around the surface, the
field E inside the bubble must be zero, and so the integral in
Eq. �3� can be restricted to the region outside the bubble. If
the bubble is spherical, the bubble radius that gives the mini-
mum value of the energy is the solution of the equation,

R0 = � Z2e2

16��� + 8��PR0
�1/3

. �4�

For zero applied pressure, this gives the total energy of an
MEB as

E =
3

2
�2�Z4e4�

�2 �1/3

. �5�

Since the energy is proportional to Z4/3 the energy is always
reduced if the bubble breaks into two. Hence, in the discus-
sion of stability given here, we are not considering whether
the energy of the bubble can be lowered if it breaks into
pieces but we are trying to determine whether there is an
energy barrier that prevents the bubble from breaking.

To consider whether the spherical shape is stable, we
write

R��,�� = R0�1 + �
l=0

�

�
m=−l

l

	lmYlm��,��	 , �6�

where 	l,−m=	lm
� . It is straightforward to show that to second

order in the parameters 	lm, the three contributions to the
energy can be written as
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Hence the total energy is

E = 12��R0
2 +

16�

3
P R0

3 + �
l=0

�
1

2

l �

m=−l

l

�	lm�2, �10�

where the spring coefficients 
l are given by


0 = 6�R0
2 + 4PR0

3, �11�

and


l = �l − 2��l − 1��R0
2 − 2�l − 1�PR0

3, �12�

for l�1. From this one can see that the bubble is stable
against spherically symmetric perturbations provided that
6�R0

2+4PR0
3�0. This leads to the condition P� Pc where

Pc = − �27���4

2Z2e2 �1/3

. �13�

For l=1, the spring coefficient 
1 is zero; this is to be ex-
pected since a perturbation of the form 	1mY1m�� ,�� corre-
sponds to a simple translation of the bubble in some direc-
tion. For l=2 the spring constant 
2 is zero if the pressure is
zero, and so this analysis of the effect of small perturbations
to the initial spherical shape does not determine the stability
of the bubble. The higher l spring constants are all positive at
zero pressure but each becomes negative if the pressure is
increased to a sufficiently positive value. It was noted by
Tempere et al.12 that if the pressure is negative �but not nega-
tive with respect to Pc�, all of the spring constants will be
positive15 and so the bubble must be stable.

The stability of the bubble at zero pressure is of special
importance, since in the experiments that have been per-
formed so far, there has been no applied pressure, apart from
the very small hydrostatic pressure due to the distance be-
tween the bubble and the free surface. At zero pressure 
2 is
zero, and so we need to go beyond the lowest order in per-
turbation theory in order to investigate the stability of an
MEB at zero pressure. One approach would be to calculate
the terms in the energy that are fourth order in the 	lm pa-
rameters. Instead we have performed numerical calculations
of the total energy as a function of bubble shape.

To do this, we describe the shape of the bubble using Eq.
�6�, but now we do not restrict the parameters 	lm to being
small. When the bubble shape changes, the electrons will
redistribute themselves over the surface so as to minimize
the energy and to make the electric field inside the bubble
zero. For each choice of shape we use the finite element
method16 to compute the surface charge distribution and the
Coulomb energy. The simulation uses 1280 triangle patches.
We start with a spherical shape and we vary the parameters
	lm to see if a state of lower energy can be reached without
passing over a barrier. We have done this using a maximum
value of five for l in Eq. �6�. This process was then repeated
for a series of different pressures. We also performed similar
calculations with a maximum value of l=15 but taking only
m=0. Both procedures gave the same results for the stability.

The result of this investigation is that for all positive pres-
sures there is no barrier to fission, whereas for negative pres-
sures there is a barrier. This result holds for all values of Z.
To illustrate the path to fission, we describe the results ob-
tained for a simplified calculation, in which only l=0 and l
=2 contributions are retained. Thus we write

R��,�� = a0 + a2�3 cos2 � − 1� . �14�

Within this simplified model, fission occurs when a2=a0
and the bubble develops a hole along the z axis when
a2=−a0 /2, i.e., takes on a donut shape. In Fig. 1�a�, we show
examples of contour plots of the energy in the a0−a2 plane.
The pressure is −0.03 mbar and Z=106. There is a stable
minimum with a2 equal to zero, i.e., the bubble is spherical.
When the pressure is zero �Fig. 1�b�
, there is still a point in
the plane at which the energy of the bubble is stationary with
respect to both a0 and a2 �at a0=23.8 �m and a2=0�, but it
is now possible to reach the fission line from this point with-
out passing over any energy barrier. Note that along this path
there is, of course, an increase in the value of a2 but also a
substantial decrease in a0. Once the pressure becomes posi-
tive �see, for example, Fig. 1�c�
, there is no point in the
a0−a2 plane where the energy is stationary.

These results can be compared with the earlier calcula-
tions by Tempere et al.14 who also investigated the stability
against fission. They used an ingenious method, in which the
bubble was described by six parameters chosen so that the
shape of a bubble undergoing fission could consist of two
spheroids connected by a hyperboloidal neck. The choice of
parameters was such that the bubble could vary from a single
sphere, to an ellipsoid, and then all the way to separated
spheres. They minimized the total energy of the bubble by
adjusting these parameters subject only to the constraint that
the total length L of the bubble had to have a given value.
They then investigated how the total energy varied with L
starting from a value of L equal to 2R0. If the energy de-
creased monotonically as L increased from 2R0 to a large
value, this indicates that the MEB is unstable against fission.
If the energy first increases before decreasing, this indicates
that the bubble is stable. To simplify the calculation, Tem-
pere and co-workers made the approximation that the charge
density was uniform over the surface of the bubble. They
concluded that at zero pressure even though there is a mode
of deformation �the l=2 mode�, which can grow without in-
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creasing the energy of the bubble, there should be an energy
barrier that prevents fission,17 whereas we find no barrier.

This difference in the results arises from the treatment of
the charge distribution on the bubble. If the bubble is as-
sumed to have surface charge density that remains uniform
when the shape changes, it is straightforward to show that
the Coulomb energy for small changes from the equilibrium
spherical shape is

EC =
Z2e2

2�R0
�1 −

1

2
�
	00	

�−
1

4�
�
l=0

�

�
m=−l

l
l2 + 3l − 1

2l + 1
�	lm�2	 .

�15�

In this case the spring constant 
l� for the lth mode �consid-
ering only l�1� becomes


l� = �l2 + l + 2��R0
2 + 2P R0

3 −
l2 + 3l − 1

2l + 1

Z2e2

4��R0
. �16�

Comparing this with the spring constant 
l when the charge
redistributes, Eq. �12� gives


l� = 
l +
�l − 1�2

2l + 1

Z2e2

4��R0
. �17�

Thus for all modes, except l=0 and l=1, making the approxi-
mation of a uniform surface charge gives an increase in stiff-
ness and makes it harder for the bubble to undergo fission.
The increase in stiffness is to be expected since a redistribu-
tion of surface charge can only lower the total energy. In Fig.
2, we show energy contour lines in the a0−a2 plane for an
MEB with 106 electrons at zero pressure calculated by taking
a uniform surface charge. One can see that within this ap-
proximation the spherical bubble is stable.

There are several physical effects that are not included in
the simplified model used so far. It is possible that allowance
for these effects would change the stability of an MEB at
zero pressure. A more detailed consideration of the Coulomb
energy �the total electron energy, to be more precise� for a

spherical bubble was given by Salomaa and Williams9,10 us-
ing the density-functional formalism of Hohenberg and
Kohn.18 This makes it possible to include the kinetic, ex-
change, and correlation energies. However, how these extra
contributions affect the spring constants is not clear and is
difficult to calculate. Salomaa and Williams showed that
these extra contributions to the energy make a very small
contribution to the energy when Z is large. For example, for
Z=108 the extra terms make a contribution that is roughly
4000 times smaller than the form Z2e2 /2�R0 for the energy
used in the simple model. The calculation could also be im-
proved, for example, by using a density-functional theory to
treat the surface of the liquid helium and by allowing for the
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FIG. 1. Contour lines of constant energy for a multielectron bubble containing 106 electrons for three different pressures. The energy
spacing between contour lines is 0.05 eV. The energy is shown as a function of the parameters a0 and a2 as defined in Eq. �14�. The electrons
are distributed over the bubble surface so as to minimize their energy.
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FIG. 2. Contour lines of constant energy for a multielectron
bubble containing 106 electrons at zero pressure. The energy spac-
ing between contour lines is 0.05 eV. The energy is shown as a
function of the parameters a0 and a2 as defined in Eq. �14�. The
electrons are uniformly distributed over the surface area of the
bubble.
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penetration of the electron wave function into the liquid. All
of these effects appear to be a very small correction to the
total energy and hence are unlikely to change the spring con-
stants by a large amount. However, it is important to note
that even a small correction could lead to a positive value for

2, which would in turn lead to a finite �but small� energy
barrier against fission. As an example, consider the correc-
tions that arise as a result of using a density-functional
scheme to describe the helium. For a bubble with radius
large compared to the thickness of the liquid-vapor interface,
the first correction to the energy can be represented by con-
sidering the surface tension � to contain a correction that is
proportional to 
, the sum of the principle curvatures of the
surface. Based on a simple density-functional scheme used
previously,19 it is straightforward to show that the correction
to the surface tension is ��=��
, where

�� = 0.9 � 10−8 erg cm−1, �18�

and the sign of the correction is such that the surface tension
is increased for a concave surface of the liquid. Inclusion of
this term changes the total energy by an amount �E, which
for a bubble at zero pressure is given by

�E

E
=

0.08

Z2/3 . �19�

It is straightforward to show that the spring constant for an
l=2 deformation at zero pressure now becomes


2 = 12��R0. �20�

Because 
2 is now positive at zero pressure, there will be a
barrier against fission. However clearly for large Z �e.g., Z
�108�, this barrier will be very small.

Another effect that may influence the stability was
pointed out by Williams and Salomaa.9–11 They show that if
the bubble is undergoing a spherically symmetric oscillation
of finite amplitude �an oscillation involving 	00� then there is
an increase in the effective spring constant for oscillations
with l=2, i.e., the spherically symmetric oscillations tend to
stabilize the bubble. It would be interesting to extend the
present calculations to include such dynamic effects. For ex-
ample, one could start with a bubble in a nonequilibrium
configuration corresponding to some initial value of the �	lm�
coefficients and their time derivatives �	̇lm�, and then one
could calculate how the bubble shape evolves as time
elapses. However, this is a significantly more complex com-
putation and would require both a large number of calcula-
tions of the electron distribution inside the bubble and also a
calculation of the motion of the liquid surrounding the
bubble.

III. STABILITY OF MOVING BUBBLES

The above results indicate that one way to stabilize an
MEB is to produce it in liquid that is under a small negative
pressure. We now consider an alternate way to maintain a
stable bubble. A bubble moving through the liquid will be
affected by the local pressure change associated with the
liquid moving around it. For a spherical bubble moving at

velocity v through an incompressible inviscid fluid with den-
sity �, the Bernoulli effect results in a pressure variation over
the surface of the bubble, which is given by20

P��� = P0 +
1

8
�v2�9 cos2 � − 5�

=P0 − �v2
�

4
Y00��,�� + �v2
9�

20
Y20��,�� .

�21�

For a bubble in liquid that is at zero pressure far removed
from the bubble �P0=0�, this changes the shape of the bubble
in two ways. The term proportional to Y00 by itself would
provide a negative pressure around the surface of the bubble
and since bubbles are stable at negative pressure, this contri-
bution serves to stabilize the bubble. The second term gives
a positive pressure at the poles of the bubble and a negative
pressure around the waist. This pressure distribution will dis-
tort a spherical bubble so as to make the parameter 	20 in Eq.
�6� �or a2 in Eq. �14�
 to be negative. This tends to stabilize
the bubble since, as can be seen from Fig. 1, for fission to
occur a2 has to become positive.

We have performed computer simulations in order to find
the shape of moving bubbles and the range of velocity and
pressure for which they are stable. We start with a guess at
the bubble shape and then calculate the charge distribution
on the surface. This then gives the pressure �Pel��� exerted
on the surface by the electrons. We then find the flow in the
liquid. To do this, we expand the velocity potential as

���� = �
l

BlPl�cos ��r−l−1, �22�

where Bl are some coefficients and the sum includes terms
up to l=20. The coefficients are determined so as to give a
velocity distribution in the liquid such that in the frame of
reference of the moving bubble, the liquid velocity at the
bubble surface in the direction normal to bubble surface is as
close to zero as possible. This gives a pressure at the bubble
surface of

P0 + �PB��� , �23�

where P0 is the pressure in the bulk liquid far removed from
the bubble and �PB��� is the Bernoulli pressure. The net
inward force acting on unit area of the bubble surface is then

P0 + �PB��� + �
 − �Pel��� , �24�

where 
 is the sum of the principle curvatures of the surface
and �Pel��� is the outward pressure exerted by the electrons.
Each part of the bubble surface is then moved inward a dis-
tance proportional to this force, and the process repeats until
the equilibrium shape is found. This calculated shape is only
stable against axial symmetric variations. In order to test its
overall stability including nonaxial symmetric variations, we
added some nonaxial symmetric perturbations on the shape
and repeated the simulation mentioned above. However this
time, the fluid potential is expanded by spherical harmonics
with maximum l=5 and all m�0. For an MEB with Z
=106, the stable shapes for three velocities at zero P0 are
shown in Fig. 3. We are able to perform the numerical cal-
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culation until the bubble becomes concave at the poles. This
is shown by the dashed line in Fig. 5.

In Fig. 4, the distance Rpole from the bubble center to the
pole and the radius Rwaist of the waist are shown as a function
of the velocity. In Fig. 5 we show a plot of the region in the
pressure-velocity plane in which the bubble is stable. This
region is bounded by two lines. For small velocities there is
a critical positive pressure at which the bubble undergoes
fission. At negative pressures the bubble becomes unstable
against expansion. For zero velocity this expansion is isotro-
pic.

Note that the change in the shape of the bubble even for a
small velocity is surprisingly large. This comes about simply
because the Bernoulli pressure contains a finite term varying
with angle Y20�� ,�� but the spring constant 
2 for this pres-
sure component is zero. Thus, for an MEB the changes in
Rpole and Rwaist are linearly proportional to the bubble veloc-
ity, whereas for a gas bubble in liquid the spring constant 
2
is finite and so the changes in dimensions are proportional to
the square of the velocity.

The region of stability of bubbles containing a different
number of electrons can be found by scaling the results
shown in Fig. 5. The instability pressure Pinstab�Z ,v� can be
written in the form

Pinstab�Z,v� = AZ−2/3f�Bv2Z2/3� , �25�

where f is a dimensionless function, A= ��4� /e2�1/3, and B
=��e2 /�4��1/3. Thus, for zero velocity the critical negative
pressure, at which a bubble becomes unstable, is propor-
tional to Z−2/3, and at zero applied pressure the critical ve-

locity, at which the bubble becomes concave at the poles
occurs, is proportional to Z−1/3. This scaling law can also be
used to give the instability pressure for an electron bubble in
helium-3 since the only parameter of the liquid that enters is
the surface tension.

We note that in this paper we have treated the liquid as
inviscid although, of course, helium above the lambda point
has a finite viscosity and below the lambda point the liquid
still has a normal fluid component. At sufficiently low tem-
peratures the density of the normal fluid becomes very small
and, in addition, the mean-free path of the excitations mak-
ing up the normal fluid becomes comparable to the radius of
an MEB. Under these conditions, it appears that the only

FIG. 4. Distance Rpole from the bubble center to the poles and
the radius Rwaist of the waist as a function of the bubble velocity.
These results are for a bubble containing 106 electrons moving
through liquid in which the pressure at large distance from the
bubble is zero.

FIG. 5. Plot of the region in the pressure-velocity plane in which
a MEB containing 106 electrons is stable. The region is bounded by
the lines on which the two different types of instability occur as
described in the text. Along the dashed line, the bubble becomes
concave at the poles and the numerical calculations become
inaccurate.

FIG. 3. The shape of a multielectron bubble containing 106 elec-
trons for bubble velocities of 3, 10, and 20 cm s−1. The pressure at
large distance from the bubble is zero.
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effect of the normal fluid is to determine the mobility of an
MEB. There should be no effect on the shape change or the
stability. For a bubble with Z=106 the mean-free path of the
thermal excitations becomes equal to the radius at around 0.6
K and at this temperature the normal fluid density is less than
the total density by a factor of 4�10−5. However as far as
we are aware, there have been no experiments with MEBs at
low temperature.

At high temperatures where the helium is in the normal
state, the situation is not so clear. It is known that when the
Reynolds number is large �but not so large that the flow
becomes turbulent� the viscosity results in a thin boundary
layer on the surface of the bubble and the pressure at the
bubble surface is close to the value that would result from
potential flow.21 This general idea would suggest that the
inviscid approximation should give reliable results for the
stability of MEBs over a wide range of the Reynolds number.
To determine this range, one could calculate the effect of
viscosity to the shape and drag on the gas bubbles moving
through the liquid using the method developed by Li and
Yan.22 We have not attempted to do this. We note that, Al-
brecht and Leiderer7 in their experiments at 3.5 K found that
the mobility of the MEBs was between one and two orders of
magnitude smaller than what is expected on the basis of or-
dinary hydrodynamics. The reason for this is unknown. In
the experiments of Volodin et al.1 and Khaikin,5 which were
performed at 1.3 K, velocities of the order of 104 cm s−1

were reported. At these velocities the normal fluid compo-
nent would be in the turbulent regime and the bubble is
moving so fast that it should lose energy through the produc-
tion of quantized vortex rings.

IV. CONCLUSION

We have examined the stability of multielectron bubbles
in liquid helium and found that stationary bubbles at positive

pressures are unstable. We show that because of the Ber-
noulli effect moving bubbles can be stable even at small
positive pressures.

It is interesting to compare the results obtained here for an
MEB with the behavior of a single electron bubble �SEB�.
For an SEB it is essential to treat the electron using quantum
mechanics. The shape is determined by a balance between
surface tension, the quantum pressure exerted by the electron
on the inside of the bubble wall, and the Bernoulli pressure
acting on the outside. The change in the shape of an SEB
was calculated by Guo and Maris.23 They found that for an
SEB bubble both Rwaist and Rpole increase with increasing
velocity and the difference between them is small so the
bubble remains approximately spherical. This is in contrast
to the results for the MEB where Rwaist increases and Rpole
decreases as shown in Fig. 4. The different behavior is re-
lated to the different “elastic” behavior of the bubble con-
tents. For an SEB there is a large energy increase associated
with a change in shape of the electron wave function even if
there is no change in the volume. This is in contrast to the
behavior of the electron energy �i.e., the Coulomb energy�
for the MEB. From Eq. �9�, one sees that the Coulomb en-
ergy actually decreases as the square of 	20. Thus, the re-
sponse of an SEB to a surface pressure varying as Y2m is
much smaller than the response of an MEB and it is for this
reason that the SEB bubble remains nearly spherical as the
velocity increases, whereas the MEB undergoes a large dis-
tortion.
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